Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Objec	tive Question			
1	1	Which of the following points are collinear?	4.0	1.00
		A1 (0,0,-10), (0,3,0), (1,4,5)		
		: (0,0,-10), (0,3,0), (1,4,3)		
		A2 (2,0,0), (0,4,0), (0,0,6)		
		. (2,0,0), (0,1,0), (0,0,0)		
		A3 : (5,3,-2), (3,2,1), (-1,0,7)		
		A4 (2,3,0), (34,35,0), (2,2,2)		
hiec	tive Question			
Object 2	2	The acute angle between the line joining the points $(3,1,-2)$, $(4,0,-4)$ and $(4,-3,3)$, $(6,-2,2)$ is	4.0	1.00
	_	The acute aligie between the line joining the points $(3,1,-2)$, $(4,0,-4)$ and $(4,-3,3)$, $(0,-2,2)$ is		1.00
		Δ1 π		
		A1 <u>π</u> : <u>3</u>		
		Α2 π		
		$\begin{array}{ccc} A2 & \frac{\pi}{6} \\ \vdots & 6 \end{array}$		
		A3 $\frac{\pi}{7}$		
		: 7		
		$\begin{array}{ll} A4 & \frac{\pi}{4} \\ \vdots & 4 \end{array}$		
		: 4		
	tive Question		1.0	1.00
3	3	The angle between the planes $2x-y+z=6$ and $x+y+2z=3$ is	4.0	1.00
		A1 <u>π</u> : <u>3</u>		
		Δ2 π		
		A2 $\frac{\pi}{6}$		
		Α3 π		
		$\begin{array}{ccc} A3 & \frac{\pi}{7} \\ \vdots & 7 \end{array}$		
		$\begin{array}{ccc} A4 & \overline{\pi} \\ \vdots & 4 \end{array}$		
		: 4		
	tive Question			
	4	The function $f: R \to R$ defined by $f(x)$ =tan x is	4.0	1.00
		Al bijective		
		: Officers		

		A2 injective but not surjective		
		A3 surjective but not injective		
		A4 neither injective nor surjective		
Ohioo	tive Question			
5	5	How many odd numbers in the range 1000-9999 have no repeated digits and end with 2?	4.0	1.00
		A1 3456		
		A2 1792		
		A3 ₀		
		A4 2296 :		
Object	tive Question			
6	6	Let X and Y be sets with $ X =m$ and $ Y =n$, $m < n$. How many injective functions are there from X to Y?	4.0	1.00
		A1 m!		
		A2 n!		
		A3 : 1		
		A4 n(n-1)(n-2)(n-m+1)		
Object	tive Question			
,	7	If there are 3 boys and 4 girls, how many way can they it in a row if the first is always a boy and last is always a girl?	4.0	1.00
		A1 7!:		
		A2 3!×4! :		
		A3 5!×3×4		
		A4 5!		
Object	tive Question	A4 5!		

		What is the coefficient of x^{11} in the expansion of $\left(2x^2 - \frac{x}{2}\right)^{12}$?		
		$ \begin{array}{c} A1 \\ \vdots \\ 16 \\ 8 \end{array} $		
		$\begin{array}{c} A2 \\ \vdots \\ 12 \\ 8 \end{array}$		
		$\begin{array}{c} A3 \\ \vdots \\ 8 \\ \end{array} \begin{pmatrix} 12 \\ 8 \\ \end{pmatrix}$		
		A4 0 :		
Objec	tive Question			
9	9	If $z_1 \& z_2$ are two complex numbers such that $Im(z_1+z_2)=0$ and $Im(z_1z_2)=0$ then	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ z_1 = z_2 \end{array} $		
		$\begin{bmatrix} A2 \\ \vdots \end{bmatrix} z_1 = -z_2$		
		$\begin{bmatrix} A3 & z_1 = \overline{z_2} \\ \vdots \end{bmatrix}$		
		$ \begin{array}{c} {\rm A4} \\ {\rm z}_1 = -\overline{z_2} \\ \vdots \end{array} $		
	tive Question		10	1.00
10	10	If a person has 100 letter in his hand and there are 20 letter boxes, in how many ways can he post the 100 letters in the 20 letter boxes?	4.0	1.00
		A1 20 x 100		
		A2 20 ¹⁰⁰		
		A3 100 ²⁰		
		A4 20!		
	tive Question		4.0	1.00
11	11	$\int \frac{x}{\sqrt{x+2}} dx =$	4.0	1.00
		A1 $\frac{2}{3}(x-4)\sqrt{x+2}+c$		

	$\begin{vmatrix} A3 & (2x-4)\sqrt{x+2} + c \\ \vdots & & \end{vmatrix}$		
	A3 $(2x-4)\sqrt{x+2}+c$ $A4 (2x+4)\sqrt{x+2}+c$		
Objective Que	stion		
12 12	The possible number of different orders that a matrix can have when it has 48 elements, is	4.0	1.00
	A1 8 :		
	A2 16		
	A3 ₁₀		
	A4 48		
Objective Que	stion		
13 13	The angle between two diagonals of a cube	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ \cos^{-1}\frac{1}{2} \end{array}$		
	$\begin{array}{c} A2 \\ \vdots \\ \cos^{-1} \frac{1}{\sqrt{2}} \end{array}$		
	$\begin{array}{c} A3 \\ \vdots \\ \cos^{-1} \frac{1}{\sqrt{3}} \end{array}$		
	$\frac{A4}{1} \cos^{-1} \frac{1}{3}$		
Objective Que	stion	4.0	1.00
14 14	The value of $x = \sqrt{12 + \sqrt{12 + \sqrt{12 + \cdots}}}$ is	4.0	1.00
	A1 3 :		
	A2 1 :		
	A3 ₄		
	A4 _∞		
Objective Que	stion		
15 15	Let $\Delta = \begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix}$, then Δ equal to	4.0	1.00

		A1 a+b+c :		
		A2 -(a+b+c)		
		A3 abc		
		A4 0 :		
Ohios	ctive Question			
16	16	What is the midpoint of the line joining the points (4,5,3) and (10,11,7)?	4.0	1.00
		A1 (1,4,5)		
		4.2		
		A2 (2,4,3)		
		A 3		
		A3 (1,2,5)		
		A4 (7.0.5)		
		A4 (7,8,5)		
Objec	ctive Question			
17	17	If an unbiased coin is tossed 5 times, what is the probability to get 2 heads and 3 tails?	4.0	1.00
		Al suc		
		A1 5/16:		
		A2 _{2/32}		
		A3 5/32		
		A4 6/32		
	ctive Question			
18	18	Sum of the series $S = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots - 1000^2 + 1001^2$ is	4.0	1.00
		A1 100051		
		. 100031		
		A2 100501		
		A3 501501		
		A4 201201		
		л		

19	If $f(x) = [x] + [-x]$, where [x] denotes the greatest integer not greater than x, then for any integer m	4.0	1.00
	A1 f is continuous at x=m:		
	A2 $\lim_{x \to \infty} f(x)$ exists and is equal to $f(m)$		
	<u>· x→m</u>		
	A3 $\lim_{x \to m} f(x)$ exists and is not equal to $f(m)$		
	f is differentable at x=m		
tive Question			
20	If S={[1],[3],[4],[5],[9]} is an abelian group under multiplication modulo 11, then the inverse of [9] is	4.0	1.00
	A1 [4]		
	A2		
	A3 [3]		
	A4 [5]		
tive Question	In the multiplicative group of non-zero congruence class modulo 7, the order of the element [3] is	4.0	1.00
	Al 6		
	A2 ₄		
	: ⁴		
	A3 ₇		
	A4 3		
	In the neuron set of (1.2.2.4.5.6), how many sets contain the elements 2 and 62	4.0	1.00
	In the power set of {1,2,3,4,3,6}, now many sets contain the elements 2 and 6?	1.0	1.00
	A1 20		
	$\begin{vmatrix} A2 \\ \vdots \end{vmatrix}$ 2 ²		
	A3 26		
	AJ 26		
-1	20 tive Question	A2 tim f(x) exists and is equal to f(m) A3 tim f(x) exists and is not equal to f(m) A4 f is differentable at x=m Tive Question If S={{1},{3},{4},{5},{9}} is an abelian group under multiplication modulo 11, then the inverse of [9] is A1 [4] A2 [1] A3 [3] A4 [5] Tive Question In the multiplicative group of non-zero congruence class modulo 7, the order of the element [3] is A1 [6] A2 [1] A3 [7] A4 [7] A4 [7] A5 [7] A6 [7] A7 [7] A6 [7] A7 [7] A8 [7] A9 [7] A9 [7] Tive Question Tive Question	A2 lim f(x) exists and is equal to f(m) A3 mm f(x) exists and is not equal to f(m) A4 f is differentiable at x=m If S={[1],{3},{4},{5},{9}} is an abelian group under multiplication modulo 11, then the invence of [9] is A1 [4] A2 [1] A3 [3] A4 [5] In the multiplicative group of non-zero congruence class modulo 7, the order of the element [3] is A1 6 A2 4 A3 7 A4 3 In the power set of {1,2,3,4,5,6}, how many sets contain the elements 2 and 6? A1 20

		\parallel :		
Objective	e Question			
23 23		Angel between the parabolas $y^2 = x$ and $x^2 = y$ at origin is	4.0	1.00
		Al		
		$\begin{array}{c} A1 \\ \vdots \\ 2 \tan^{-1}(3/4) \end{array}$		
		$\frac{A2}{100} \tan^{-1}(4/3)$		
		$\begin{array}{c c} A3 & \pi \\ \vdots & \hline 2 \end{array}$		
		$\begin{vmatrix} A4 & \frac{\pi}{4} \\ \vdots & 4 \end{vmatrix}$		
Objective 24 24	ve Question		4.0	1.00
.		Sum of all the values of x satisfying the equation $log_{100}log_7(\sqrt{x+7}+\sqrt{x})=0$ is	1.0	1.00
		A1 25 :		
		A2 9:		
		A3		
		A3 ₁₇₁ :		
		A4 10		
	e Question			
25 25	.5	When the eccentricity of an ellipse becomes zero then ellipse becomes a	4.0	1.00
		A1 straight line		
		A2 circle		
		A3 point:		
		A4i. of serial times		
		A4 pair of straight lines		
Objective	e Question			
26 20	26	Let $A = \{1,2,\{3,4\},5\}$. Which of the following statements is incorrect?	4.0	1.00
		$\begin{bmatrix} A1 \\ \{\emptyset\} \subset A \end{bmatrix}$		
		$A2 : \{3,4\} \subset A$		
		A3 $1 \in A$		

		:		
Obje	ctive Question			
27	27	For a set A , let $P(A)$ denote its power set. Then $P(P(\emptyset))$ is	4.0	1.00
		A1 Ø :		
		A2 {Ø}		
		A3 {{Ø}}		
		A4 {Ø,{Ø}}		
		: (o,to)		
Obie	ctive Question			
8	28	Let A and B be two finite sets. Which of the following statements is FALSE?	4.0	1.00
		Let A and B be two finite sets. Which of the following statements is FALSE? [Here P(A) denotes the power set of A and A denotes thenumber of elements of A]		
		A1 p(4) p(p) . 4 P		
		$ \begin{array}{c} A1 \\ \vdots \\ P(A) = P(B) \Longrightarrow A = B \end{array} $		
		A2		
		$ P(A \cup B) = P(A) \cup P(B) $		
		A3		
		$ (A3) P(A \cap B) = P(A) \cap P(B) $		
		$ P(A \times B) = 2^{ A \times B } $		
Obje 9	ctive Question	The value of Sin 15° is	4.0	1.00
		The value of Sin 15° is		
		$\begin{array}{c c} A1 & \sqrt{3}-1 \\ \vdots & 2\sqrt{2} \end{array}$		
		: 2√2		
		$A2 \sqrt{3}+1$		
		$\begin{array}{c} A2 & \sqrt{3}+1 \\ \vdots & 2\sqrt{2} \end{array}$		
		$\begin{array}{c} A3 & \sqrt{3}-1 \\ \vdots & \sqrt{2} \end{array}$		
		$ \begin{array}{c c} A4 & \sqrt{3}+1 \\ \vdots & \hline \sqrt{2} \end{array} $		
	ctive Question			
30	30	The value of $tan \frac{\pi}{8}$ is	4.0	1.00
		8		
		$ \stackrel{\text{Al}}{:} \sqrt{2} - 1 $		
		$\sqrt{2-1}$		

II		II	II
	$\begin{array}{c} A2 \\ \vdots \end{array} \sqrt{2} + 1$		
	$\begin{bmatrix} A3 \\ \vdots \end{bmatrix} 1 - \sqrt{2}$		
	$\begin{bmatrix} A4 \\ \vdots \end{bmatrix} -1 - \sqrt{2}$		
jective Quest	ion		
31	How many two digit even numbers can be formed from the digits 1,2,3,4,5, if the digits can be repeated?	4.0	1.00
	A1 10		
	A2 25		
	A3 120		
	A4		
	A4 60		
jective Quest	ion		
32	How many four digit numbers can be formed using the digits 1 to 9, if repetition of digits is not allowed?	4.0	1.00
	A1 3024		
	A2 2034		
	A3 3042		
	A4 4203		
ojective Quest	ion		
33	What is the number of ways of choosing four cards of the same colour from a pack of 52 playing cards?	4.0	1.00
	A1 20099		
	A2 29900		
	A3 4		
	A4 14950		
ective Quest		4.0	1.00
37	The equation of the parabola with vertex at $(0,0)$ and focus at $(0,2)$ is	7.0	1.00

	II	A1 2 0	II	
		$\begin{vmatrix} A1 & y^2 = 8x \\ \vdots & \ddots & \vdots \\ A1 & y^2 = 8x \end{vmatrix}$		
		$ \begin{vmatrix} A2 \\ \vdots \\ x^2 = 8y \end{vmatrix} $		
		= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$		
		$\begin{vmatrix} A3 & y^2 = 4x \\ \vdots & y^2 = 4x \end{vmatrix}$		
		$\begin{vmatrix} A4 & x^2 = 4y \\ \vdots & x^2 = 4y \end{vmatrix}$		
Objec	tive Question		4.0	1.00
35	35	The value of $\lim_{x\to 0} \frac{x^{15}-1}{x^{10}-1}$ is	4.0	1.00
		A1 3/4 :		
		A2 3/2		
		A3 -3/4 :		
		A4 -3/2		
		: -3/2		
Objec	etive Question			
36	36	The value of $\lim_{x\to 0} \frac{\tan x}{x}$ is	4.0	1.00
		X X		
		A1 ₁		
		A2 0		
		A3 -1 :		
		A.4.		
		A4 _{∞0} :		
Objec	etive Question			
37	37	$\int \frac{ x }{x} \neq 0$	4.0	1.00
		If $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then the $\lim_{x \to 0} f(x)$ is equal to		
		A1		
		A1 ₀		
		A2 ,		
		A2 1		
		A3 ₁		
		A3 -1		

		A4 Does not exist :		
	tive Question			14.00
38	38	If the function $f(x)$ satisfies $\lim_{x\to 1}\frac{f(x)-2}{x^2-1}=\pi$ then $\lim_{x\to 1}f(x)$ is equal to	4.0	1.00
		A1 2		
		A2 0		
		A3 -π		
		Α4 π		
Objec	tive Question			
39	39	Let $f: \mathbb{R} \setminus \left\{-\frac{4}{3}\right\} \to \mathbb{R}$ be a fraction defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is the map $g: Rangef \to \mathbb{R} \setminus \left\{-\frac{4}{3}\right\}$ given by	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ g(y) = \frac{3y}{3-4y} \end{array} $		
		$ ^{A2} g(y) = \frac{4y}{4-3y} $		
		$ \begin{array}{c} A3 \\ \vdots \\ g(y) = \frac{4y}{3-4y} \end{array} $		
		$ \begin{array}{ccc} A4 & g(y) = \frac{3y}{4-3y} \\ \vdots & & \end{array} $		
	tive Question		4.0	1.00
40	40	The binary equation $*$ on $\mathbb N$ defined as $a*b=a^3+b^3$ is	4.0	1.00
		A1 Both associative and commutative		
		A2 Commutative but not associative		
		A3 Associative but not commutative		
		A4 Neither commutative nor associative :		
Objec	tive Question			
41	41	Let A = {a,b,c}. Then number of relations containing (a,b) and (a,c) which are reflexive and symmetric but not transitive is	4.0	1.00
		Al 1		

		A2 2 :		
		A3 ₃ :		
		A4 4 :		
Object	tive Question			
	42	Let $A = \{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is	4.0	1.00
		A1 : 1		
		A2 2		
		A3 3		
		A4 4 :		
01:	· • · ·			
	tive Question 43		4.0	1.00
73	13	The value of the $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ is	1.0	1.00
		$\begin{array}{ccc} A1 & \frac{\pi^2}{32} \\ \vdots & \frac{\pi^2}{32} \end{array}$		
		$\begin{array}{ccc} A2 & \frac{\pi^2}{36} \\ \vdots & & \\ \end{array}$		
		A3 $\frac{-\pi^2}{36}$		
		$\begin{array}{c c} A4 & \frac{\pi^2}{8} \\ \vdots & \frac{\pi^2}{8} \end{array}$		
Ohiect	tive Question			
	44	The value of the $\int_{-1}^{1} sin^5xcos^4xdx$ is	4.0	1.00
		$\begin{array}{ccc} A1 & \frac{\pi}{2} \\ \vdots & \end{array}$		
		$\begin{array}{cccc} A2 & \frac{-\pi}{2} \\ \vdots & \end{array}$		
		A3 1		
		A4 0		
01.				
	tive Question		4.0	1.00
TJ.	7.5	The area of the region bounded by the two parabolas $y = x^2$ and $x = y^2$ is	۳.0	1.00

	A1 1/3		
	A2 2/3		
	A3 1		
	$\begin{array}{ccc} A4 & \underline{1} \\ \vdots & \sqrt{3} \end{array}$		
Objective Question			
46 46	The area bounded by the curve $y=\cos x$ between $x=0$ and $x=2\pi$ is	4.0	1.00
	$A1 \sqrt{3}\pi$		
	$\begin{array}{c} A2 \\ \vdots \\ 2\sqrt{3} \end{array}$		
	A3 _{2π} :		
	A4 ₄		
Objective Question 47 47		4.0	1.00
	The area of the region $\{(x,y): y \ge x^2 \text{ and } y \le x \}$ is		
	A1 1/3		
	A2 2/3		
	A3 1/2		
	·		
	A4 1:		
Oli Circ Operation			
	A4 1 :	4.0	1.00
	A4 1 : The area bounded by the curve $y = x x $, X-axis and the ordinates $x = 1$ and $x = -1$ is given by	4.0	1.00
Objective Question 48 48	A4 1 :	4.0	1.00
	A4 1 : The area bounded by the curve $y = x x $, X-axis and the ordinates $x = 1$ and $x = -1$ is given by	4.0	1.00
	The area bounded by the curve $y = x x $, X-axis and the ordinates $x = 1$ and $x = -1$ is given by $\begin{bmatrix} A1 & 0 & \\ \vdots & 0 & \\ \end{bmatrix}$	4.0	1.00

	ve Question 49	2 0	4.0	1.00
		The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$ is		
		A1 3		
		A2 2		
		A3 : 1		
		A4 Not defined:		
	ve Question 50	The particular solution of the differential equation $\frac{dy}{dx}=-4xy^2$, given that $y=1$, when $x=0$ is	4.0	1.00
		$\begin{array}{cc} A1 \\ \vdots \end{array} y = \frac{1}{2x^2 + 1}$		
		$\begin{array}{ccc} A2 & y = \frac{1}{2x^2 - 1} \end{array}$		
		$A3 y = \frac{x}{2x^2 + 1}$		
		$A4 y = \frac{x}{2x^2 - 1}$		
bjecti	ive Question			
	51	The function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is	4.0	1.00
		A1 Continuous at 0 but not differentiable at 0		
		A2 Differentiable at 0 but not continuous at 0		
		A3 Neither differentiable nor continuous at 0		
		A4 Both differentiable and continuous at 0		
bjecti	ve Question			
	52	The number of elements in a set $\{(a,b) \mid 2a^2 + 3b^2 = 35, a,b \text{ integers }\}$	4.0	1.00
		A1 2		
		A2 4 :		

	A3 8 :		
	A4 12		
Objective Qu	estion		
53 53	If $H_a = \{an: n \in \mathbb{N}\}$ then $H_3 \cap H_7$ equal to	4.0	1.00
	A1 H ₃		
	A2 H ₇		
	A3 H ₁ :		
	A4 H ₂₁ :		
Objective Qu	estion		
54 54	Let S be the set of integers, the relation \sim defined on $S \times S$ as $(a,b) \sim (c,d)$ if $ad = -bc$, then	4.0	1.00
	$\stackrel{A1}{:}$ ~ is transitive but not symmetric		
	$^{\mathrm{A2}}$ ~ is symmetric but not transitive.		
	$\stackrel{A3}{:}$ ~ is neither symmetric nor transitive		
	$\stackrel{A4}{:}$ ~ is reflexive, symmetric and transitive.		
Objective Qu	estion		
55 55	Let $f(x) = \frac{ax+b}{cx+d}$. If $f(f(x)) = x$ then	4.0	1.00
	$\begin{vmatrix} A1 \\ \vdots \end{vmatrix} a = 0$		
	$\begin{vmatrix} A2 \\ \vdots \\ ab = bd \end{vmatrix}$		
	A3 d=0		
	$\begin{vmatrix} A4 \\ \vdots \end{vmatrix} a = -d$		
Objective Qu	estion		
56 56	Which one of the following is a bijective mapping from Z, the ring of integers, to itself	4.0	1.00

		$\begin{vmatrix} A1 \\ \vdots \\ f(x) = 5 \end{vmatrix}$		
		A3 : f(x) = 5 + x		
Obiec	tive Question			
57	57	If the roots of the equation $2x^2$ - $(p+1)x+p-1=0$ are a and b with a-b = ab, then	4.0	1.00
		$\begin{vmatrix} A1 \\ \vdots \\ p=2 \end{vmatrix}$		
		$\begin{vmatrix} A2 \\ \vdots \end{vmatrix} p = 4$		
		$ \begin{array}{c} A3 \\ \vdots \\ p = 8 \end{array} $		
		$\begin{vmatrix} A4 & p = 0 \\ \vdots & p = 0 \end{vmatrix}$		
01:				
Object 58	tive Question 58		4.0	1.00
38	38	If a and b are the roots of the equation $x^2 - \sqrt{a}x + b = 0$ then	4.0	1.00
		A1 $a = 0$ and $b = 1$		
		A2 = 1 and b = 1		
		A3 = 1 and b = -1		
		A4 a = 1 and b = 0		
OI-:	tive Question			
59	59	If A is a square matrix, with $A^2 = A$ then $(I - A)^n$ is equal to	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ I+2^n A \end{array} $		
		$A2 : I - (2^n + 1) A$		
		$\stackrel{A3}{:}$ I + (2 ⁿ – I) A		
		$A4 : I + (2^n + I) A$		

0	tive Question 60	ICA ID (1 14.42 P2 (1 17.42 P)	4.0	1.00
,0		If A and B are square matrices such that $A^2 - B^2 = (A + B)(A - B)$	4.0	1.00
		A1		
		$\begin{vmatrix} A1 \\ \vdots \\ A = B \end{vmatrix}$		
		A2 A = B = I		
		: A-B-1		
		$A_{B} = -BA$		
		·		
		A4 AB = BA		
Objec	tive Question			
1	61	How many four letter words can be formed from the set of alphabets {a,b,c,d,e,f,g}	4.0	1.00
		A1 7 ⁴ - 7		
		A2 7 _{P4} - 7		
		A3 7 ⁴ - ⁷ P ₄		
		: / · - · P4		
		A4 7!		
		·		
\1 ·				
)ыјес 52	tive Question	There are n different locks and there are n different keys for them. To match the locks with correct keys the maximum number	4.0	1.00
-		of needed trials is		1.00
		A1 n!		
		: "		
		$\begin{vmatrix} A2 \\ \vdots \end{vmatrix}$ 2n		
		A3 2		
		A3 n ²		
		A3 n ² A4 n(n+1)/2		
	tive Question	A4 n(n+1)/2	4 0	1 00
Objec i3	tive Question 63	A4 n(n+1)/2	4.0	1.00
			4.0	1.00
			4.0	1.00
		A4 n(n+1)/2	4.0	1.00
			4.0	1.00
			4.0	1.00
			4.0	1.00
		The coefficient of x^{11} in the expansion $(1+3x+2x^2)^6$ is A1 264 A2 576	4.0	1.00
			4.0	1.00

		A4 744 :		
Object	ctive Question			
эвјес 54	64	The sum of first $(2n + 1)$ terms in the series $a - (a+d) + (a+2d) - (a+3d)$ is equal to	4.0	1.00
		A1 2nd		
		$\begin{array}{c} A2 \\ \vdots \\ \end{array} a + 2nd$		
		$\begin{array}{c} A3 \\ \vdots \\ \end{array} a-nd$		
		$\begin{bmatrix} A4 \\ \vdots \end{bmatrix} a + nd$		
Objec	ctive Question			
65	65	Suppose f is a real valued function defined on Real numbers such that $f(x+y) = f(x) + f(y)$. Then	4.0	1.00
		A1 f is an even function		
		A2 f is an odd function		
		A3 f is neither even nor odd function		
		A4 f is not a sum of an odd function and an even function		
Objec	ctive Question			
66	66	Let $x_1 = 5$ and $x_{n+1} = \sqrt{2 + x_n}$ n>0, then $\lim_{n \to \infty} x_n$ equal to	4.0	1.00
		A1 0 :		
		A2 ₂		
		A3 3 :		
		A4 infinity		
Obied	ctive Question			
67	67	$\lim_{x\to\infty} x^{1/x}$ is equal to	4.0	1.00
		A1 0:		
		A2 1		

	A3 e		
	A4 infinity		
bjective Quest	ion	l	
68	If $\lim_{x\to a} \frac{a^x-x^a}{x^x-a^a} = -1$ with $a>0$ then	4.0	1.00
	$\begin{bmatrix} A1 \\ \vdots \end{bmatrix} a = 0$		
	$\begin{array}{c} A2 \\ \vdots \\ a=1 \end{array}$		
	$\begin{array}{c} A3 \\ \vdots \\ a = e \end{array}$		
	$\begin{array}{c} A4 \\ \vdots \\ a = 1/e \end{array}$		
Objective Quest	ion		
69 69	If $\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC}$, then A, B, C are	4.0	1.00
	A1 coplanar		
	A2 non coplanar		
	A3 coplanar but need not be collinear		
	A4 collinear		
Objective Quest			
0 70	Let A be a subset of S such that $A \cup B = B$ for every finite subset B of S. Then	4.0	1.00
	A1 S is empty set:		
	A2 A is empty set :		
	$\begin{array}{c} A3 \\ \vdots \\ S = A \end{array}$		
	A4 A is an infinite subset		
Objective Quest	Let A be a subset of B. (i) each element of A is an element of B (ii) if x is not an element of B then x is not an element of A.	4.0	1.00

	: A4 i or -1		
	$\begin{bmatrix} A2 & i \text{ or } -i \\ \vdots & & \\ A3 & 1 \text{ or } -1 \end{bmatrix}$		
	Al lori		
	If z and w be two complex numbers such that $ z \le 1$, $ w \le 1$ and $ z+iw = z-iw = 2$ then z equals	7.0	1.00
Objective Question 74		4.0	1.00
	$ \begin{array}{c} A4 \\ \vdots \\ \end{array} $ maximum at $x = -1$		
	A3 minimum at $x = 2$		
	$\begin{array}{l} A2 \\ \vdots \\ \end{array} \text{ minimum at } x=1$		
	A1 maximum at $x = 1$		
Objective Question 73 73	The function $f(x) = 3x(x-2)$ has	4.0	1.00
	A4 n divides b if b is a prime number:		
	A3 n divides b if n is a prime number:		
	A2 n divides b if b is a composite number:		
	A1 n always divides b		
Objective Question 72 72	If an integer n divides a product ab and n does not divide a	4.0	1.00
	A4 Neither (i) nor (ii) is true:		
	A3 (ii) is true but (i) is not true.		
	A2 (i) is true but (ii) is not true.		

	tive Question 75		4.0	1.00
3	73	If z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $ z_1 = z_2 $. If z_1 has positive real part and z_2 has negative imaginary part then $\frac{z_1 + z_2}{z_{1-z_2}}$ may be	4.0	1.00
		Al Zero		
		A2 Real and positive		
		A3 Real and negative		
		A4 None of these		
)bjec1	tive Question			
76	76	If ω is an imaginary cube root of unity the $(1+\omega+\omega^2)^7$ equals	4.0	1.00
		A1 128 ω		
		A2 -128 ω		
		$^{\mathrm{A3}}_{:}$ 128 ω^2		
		$^{\mathrm{A4}}_{:}$ $-128\omega^2$		
Object	tive Question			
77	77	The complex number z_1 , z_2 and z_3 satisfying $\frac{z_1-z_2}{z_2-z_3}=\frac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is	4.0	1.00
		A1 of area zero :		
		A2 Right angled isosceles triangel		
		A3 Equilateral triangel		
		A4 Obtuse angle isosceles triangle:		
01:				
78	78	If z_1 and z_2 be the n^{th} roots of unity which subtend a right angle at the origin, then 'n' must be of the form	4.0	1.00
		A1 4k+1		
		A2 4k+2		

		$\begin{bmatrix} A_3 & 4_{k+3} \\ \vdots & & \end{bmatrix}$		
		A4 4k :		
	etive Question			
79	79	What is $\sqrt{-6}\sqrt{-6}$?	4.0	1.00
		A1 6 :		
		A2 -6		
		A3 6i		
		A4 -6i		
	etive Question			
30	80	The complex number z is such that $ z = 1$, $ z \neq 1$ and $w = \frac{z-1}{z+1}$, then real part of w is	4.0	1.00
		$\begin{array}{c c} A1 & 1 \\ \vdots & z+1 ^2 \end{array}$		
		A2 $\frac{-1}{ z+1 ^2}$		
		$\begin{array}{c} A3 \frac{\sqrt{2}}{ z+1 ^2} \end{array}$		
		A4 0		
Objec 81	etive Question		4.0	1.00
31	01	Mean of 10 observations is 5, if a constant 4 is added to every observation, then the new mean is	7.0	1.00
		A1 New Mean > Old Mean :		
		A2 New Mean < Old Mean:		
		A3 New Mean = Old Mean		
		A4 New Mean is no way related to Old Mean :		
	etive Question		4.0	1 00
Objec 82	etive Question	The median of 10 observations is equal to 50 if 3 is added to each observation, then the new median value is A1 10	4.0	1.00

	A2 13		
	A3 50		
	A4 53		
Objective Question			
3 83	The following relation holds good with GM =	4.0	1.00
	A1 (A.M. * H.M) ²		
	A2 (A.M.* H.M) ^{1/2}		
	A3 (A.M. * H.M)		
	A4 (A.M. +H.M)/2		
Objective Question	1		
1 84	Which of the following measure can make use of the 100% data	4.0	1.00
	Al Median		
	A2 Minimum		
	A3 Mean		
	A4		
	: Maximum		
Objective Question			
Objective Question 5 85		4.0	1.00
	A.M. of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a'	4.0	1.00
	A.M. of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a' and 'b' misread in the place of 'c' and 'd'. what is the corrected mean value	4.0	1.00
	A.M. of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a' and 'b' misread in the place of 'c' and 'd'. what is the corrected mean value $ \frac{A1}{n} \frac{n\overline{X} - (a+b) + (c+d)}{n} $	4.0	1.00
	A.M. of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a' and 'b' misread in the place of 'c' and 'd'. what is the corrected mean value A1 $n\overline{X} - (a+b) + (c+d)$: n A2 $\overline{X} - (a+b) + (c+d)$: n	4.0	1.00

86	86	The Range of the following data is 23,1,21,24,43,51,15,26,13	4.0	1.00
		A1 : 1		
		A2 25 :		
		A3 50 :		
		A4 51 :		
Object	tive Question			
87	87	The limits of Standard Deviation are	4.0	1.00
		A1 †O +		
		A2 0 to ∞:		
		A3 0 to 1		
		A4 -1 to +1		
Object	tive Question			
88	88	Axiomatic approach to the probability was due to	4.0	1.00
		A1 A.N.Kolmogorov		
		A2 De-movier		
		A3 Von-mises		
		A4 Pascal :		
Object	tive Question			
89	89	A card is drawn from a well shuffled pack of cards. The probability of the card drawn is either spade or Ace is =	4.0	1.00
		A1 13/52 :		
		A2 4/52		
		A3 17/52		

Objec 90	etive Question		4.0	1.00
90	90	Probability of getting Diamond King card from a well shuffled pack of cards is equal to	4.0	1.00
		A1		
		A1 21/36		
		A2 1/4		
		A3 1/52		
		A4 1/12		
		A4 1/13		
Objec 91	etive Question	If a harmonic 2 Paddalla (Consulalla and 0 Vallandalla a hall a damma 4 and an farm the har What a than harmonic	4.0	1.00
,1		If a bag contains 3 Red balls, 6 Green balls and 9 Yellow balls, a ball is drawn at random from the bag. What is the chance that randomly drawn ball is either Green or Red	1.0	1.00
		A1 3/18		
		A2 6/18		
		·		
		A3 9/18		
		: 9/18		
		A4 12/18 :		
	tive Question			
92	92	Probability of getting both dice shown the same number when pair of dice are rolled simultaneously	4.0	1.00
		Alac		
		A1 3/6		
		A2 1/6		
		A3 2/6		
		·		
		A4 A/C		
		A4 4/6		
01.				
Objec 93	etive Question	Given that $P(A) = 1/3$, $P(B) = 3/4$, $P(A \cup B) = 11/12$ the probability $P(B/A) =$	4.0	1.00
	etive Question	Given that $P(A) = 1/3$, $P(B) = 3/4$, $P(A \cup B) = 11/12$, the probability, $P(B/A) =$	4.0	1.00
			4.0	1.00
		Given that P(A) = 1/3, P(B) = 3/4, P(A U B) = 11/12, the probability, P(B/A) = A1 1/6	4.0	1.00
		A1 : 1/6	4.0	1.00
			4.0	1.00
		A1 : 1/6	4.0	1.00

		A4 1/4		
		A4 1/4		
Objec 14	tive Question		4.0	1.00
4	94	The odds in favour of a certain event are 5:4 and odds against another event are 4:3. the chance that at least one of them will happen is by assuming the events are independent	4.0	1.00
		A1 15/63		
		A2 51/63		
		A3 47/63		
		A4 7/63		
Objec	tive Question			
95	95	If the probabilities of passing in an examination for a boy and a girl are 3/5 and 2/5 respectively, then the chance passing at least one of them is	4.0	1.00
		A1 6/25		
		A2 15/25		
		A3 19/25		
		A4 2/25		
Obiaa	tive Overtice			
Эвјес 96	tive Question	Probability of getting a square number as outcome when a single die is thrown is	4.0	1.00
		1 Toolability of getting a square number as outcome when a single die is unown is		
		A1 : 1/6		
		A2 2/6		
		A3 3/6		
		A4 4/6 :		
21.	···· O +i			
Эвјес 97	97	Let the event A be getting even number and B be the event of getting even squared number when a die is thrown. Then the probability of getting $A \cap B$	4.0	1.00
		Alacc		
		A1 3/6		

	A2 2/6 :		
	A3 1/6		
	A4 4/6		
Objective Question			
98 98	Probability of getting either all tails of all heads when 5 coins are tossed simultaneously,	4.0	1.00
	A1 4/32 :		
	A2 3/32		
	A3 1/32 :		
	A4 _{2/32} :		
Objective Question 99 99	A box contains 'a' white balls and 'b' black balls; If 'c' balls are drawn from the box then the expected number of white balls among the c balls is	4.0	1.00
	$ \begin{array}{ccc} A1 \\ \vdots \\ c * \left(\frac{a-b}{a+b}\right) \end{array} $		
	$\begin{array}{c} A2 \\ : c * \left(\frac{a}{a+b}\right) \end{array}$		
	$\stackrel{\text{A3}}{:} c * \left(\frac{a}{a - b} \right)$		
	$\stackrel{A4}{:} c * \left(\frac{ab}{a+b} \right)$		
Ohjective Question			
Objective Question 100 100		4.0	1.00
		4.0	1.00
	If A and B are exclusive events then P(A/B) =	4.0	1.00
	If A and B are exclusive events then P(A/B) = A1 P(A):	4.0	1.00